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1 Introduction

With the current connectivity of the world wide web, the effectiveness of a search engine is
crucial to the success of a web search engine company. For any web surfer, the expectation is
to receive the most relevant and useful answers to his or her query in a timely manner after a
simple click of the ”search” bottom. In this aspect, Google has been very successful. It is no
coincidence that users are able to find what they need solely from the first page of their search
result almost every single time. The backbone of the Google search engine could be said to
be the Google PageRank, which is one of the algorithms that Google utilizes to sort its search
results. Compared to the other Google algorithms, the Google PageRank is by far the most
popular. Surprisingly, the reasoning behind the PageRank algorithm is actually a quite simple
application of basic probability and linear algebra. In theory, a Google PageRank is just a finite
Markov Chain of pages that eventually converges to a steady-state vector.

2 Google PageRank

In the Google PageRank algorithm, the order in which the web pages are ordered is based on
each page’s importance and number of visits. The importance of a web page is determined by
the page’s number of incoming and outgoing links [5]. Under the assumption that an incoming
link from page A to B serves as an endorsement for B, those pages with a higher number of
incoming links are considered more important, and pages that are linked to highly important
pages (those with good quality back links) are also considered important [6]. Using the Markov
Model, Google assigns a score to each web page and list them in descending order when a search
is initiated. All else equal, if two pages have the same number of links, the page with the higher
number of incoming links will be assigned a higher score in the end.

2.1 Markov Chain

One of the PageRank algorithms that Google uses for its search engine is the Markov Chain
Model, which is a non-deterministic finite state machine with probability-driven transitions [5].
The transitions are stochastic, having the Markov property that their future value, conditional
on their present value, is independent of their past values. In other words, for a sequence X
taking values in a state space S,
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for all n > 0 and 49, i1, ...,ip+1 € S [2]. Under this assumption, future events can be determined
solely from information in the present state.

If X is a homogeneous Markov chain, there is a transition matrix P = (p;; : ¢,j € S) with
transition probabilities p; ; = P(X,41 = j|X, = 7), and initial distribution A = (\; : i € 5),
where \; = P(Xy = i) [2]. The initial transition matrix P used in the Google PageRank
algorithm for n pages is a column-stochastic matrix: a real non-negative square n X n matrix
such that p; ; > 0 and each column sums up to 1. Using this model, the probability that a surfer
is at a particular page at a point in time can be found using the transition probabilities p; ; that
the system moves from page i to j at any time t.

The Google transition matrix (G) is given by
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where P, is a matrix modeling the behavior of a random web surfer such that P is adjusted for
dangling nodes, with entries
P”_{Cij/si, ifsi21
1 /n, if ;=0

for a transition matrix with n web pages [5]. The quantities are defined as follow: s; is the
number of outgoing links from page i, ¢;; is equal to 1 if there is a hyperlink from page i to j and
0 otherwise, and d € [0, 1] is the damping factor [5]. The damping factor (usually equal to 0.85
in the Google algorithm) represents the probability that the surfer will follow the assumption
of either checking on one of the outgoing links in the current page with equal probability, or
jumping to a random page if there is no outgoing link (to remove dangling nodes) [6]. The
resulting Google Matrix G is an irreducible stochastic matrix such that for any pair of web
pages, a surfer can start at one page, eventually arrive at the other, and then get back to the
original page.

2.2 Convergence of Google Matrix

The computation of a pagerank vector given G will continue until it converges or when no further
changes can be made. Since the Google transition matrix G is a positive, irreducible column-
stochastic matrix such that all its entries are greater than 0, we can apply the Perron-Frobenius
Theorem. From the Perron-Frobenius Theorem, it follows that G will eventually converge to a
steady-state vector [6].

2.2.1 Perron-Frobenius Theorem

Suppose A is a n x n positive matrix with spectral radius p (largest absolute value of its eigen-
values for a square matrix) [4]. Then p > 0 and

i) pis an eigenvalue of A
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ii) p has algebraic multiplicity 1

iii) p has eigenvector v s.t. v > 0

iv) for all other eigenvalues A of A, A # p, [\| <p
)

v) If u is an eigenvector of A (corresponding to any eigenvalue) whose entries are all positive,
then u is a scalar multiple of v

Proof. (With reference to proof given in [4])

i) and iii): Suppose z € S, where S is the set of R™ vectors with non-negative entries and a
norm of 1. Then for any x, all entries of Ax are positive. Defining a function

Az
L(z) = min{ﬂ DX F O} ,
Z;
where the value of L(x) is the scaling factor that x is multiplied by to get Az. In S, there is a
v € S that results in the largest L value, where L(v) = p. Since (Av); = pv; for all i, Av—pv >0
and A(Av — pv) > 0, so de > 0, ¢ > 0 such that A(Av — pv) > eAv and

A(Av) > (p+ €)Av, A(cAv) = (p + €)cAv, L(cAv) = (p + €),

which contradicts that the largest L is p. Therefore, Av = pv. Since v € S is non-negative, Av
has all positive entries, so pv is positive, and it follows that v > 0.

ii): Since 1 < geometric multiplicity of an eigenvalue < algebraic multiplicity of an eigenvalue, for
the purpose of proving just statement ii), start off by taking for granted that that the geometric
multiplicity of p is 1. Since A and A’ have the same eigenvalues, suppose w is the eigenvector
corresponding to A”, then ATw = pw and (ATw)T = (pw)”, so wT' A = pw”. Suppose U is
the A-invariant subspace of orthogonal complements of W such that w’ Au = pw’u = 0, then
we can extend the eigenvector v of p, where v ¢ U, into a basis B = {v,by,...,b,—1} of R™,
where {b1, ...,b,—1} is a basis of U. For a similar matrix A’ of A with respect to the basis B, the

0

characteristic polynomial of A" is (x — p)pp(x), where pp(z) is the characteristic polynomial of
a real matrix B with respect to the basis B. If p is an eigenvalue of B, then an eigenvector of A’
is the eigenvector v preceded by a zero entry. Since e is also an eigenvector of p for A’, p would
have geometric multiplicity of at least 2, which means that A would also have p with geometric
multiplicity at least 2 since A and A’ are similar. This contradicts the initial assumption that
the geometric multiplicity of p is 1, so the algebraic multiplicity of p is 1.

v): If w is a positive eigenvector of A with eigenvalue u, where 0 < p < p. If Je such that
u = v — eu, then for each entry i, (Au'), = pv; — peu; > p (v; — eu;) = pu;. Therefore, Au’' = pu/
since p is known to be the spectral radius of A. Thus, it follows that u,u’ are scalar multiples
of v and p = p.
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iv): For the sake of contradiction, suppose p # p but |u| = p, and that y is an eigenvector of p
with norm 1. Then for |y| € C",

(AlyDi =Y Aijlysl =D 1Ayl = D Agys| = luyil = pluil
i i

which means that |y| is an eigenvector of p and |y| = v. Note that each entry A;; is real and
positive, so ey is positive for some #, which means that it is a positive scalar multiple of v.
Since p is the only eigenvalue corresponding to the eigenvector v according to v), u = p, which
gives a contradiction since p # p. Therefore, |u| < p.

Cl

Specifically for a stochastic matrix, 1 is a distinct eigenvalue, and the absolute value any other
eigenvalue is less than 1, as illustrated below [3].

1

1
For the row-stochastic matrix GT, GTv = 1v for v = | . |, so 1 is an eigenvalue of GT.

1
Since GT and G have the same characteristic polynomial, it follows that they have the same
eigenvalues [1], which means 1 is also an eigenvalue of G. For any other eigenvalue A of GT with

eigenvector u so that GTu = A, if u; is the entry with the largest absolute value, the 4t entry
of the equation satisfies

A Jug| =

n n n
> giui <D gi5 - luil < gij -
i=1 i=1 i=1

for entries g;; € G [3]. Since the columns of G sums up to 1, |A| - |g;| < 1-]g;|, so it follows
that |A\| < 1. Applying the Perron-Frobenius Theorem, 1 is the spectral radius p of G with
multiplicity 1, and so |A\| < 1 for any other eigenvalue A as a consequence of the theorem.

In particular, there is a unique, positive steady-state vector that is an eigenvector corresponding
to the eigenvalue 1, according to the Perron-Frobenius Theorem. This is the pagerank vector
that the Google matrix G will eventually converge to [6].

2.2.2 PageRank Vector

For the sake of simplicity, let’s assume that the eigenvalues of the Google Matrix G are distinct.
In other words, if G is an n xn matrix, then there are n eigenvalues Aq, ..., A, of G (where A} = 1),
with corresponding linearly independent eigenvectors vy, ..., v, (normalized so that [|v;|| = 1).
Therefore, if G is the matrix of an operator T' € L(V), then V = E(AM,T)® - ® E (A, T)
and T is diagonalizable [1]. Hence, the Google Matrix can be written as G = PDP~!, where P
is an invertible matrix with columns consisting of the eigenvectors of G and D is the diagonal
matrix of G with eigenvalues Ay, ..., A\, along its diagonal.

Suppose there is an initial pagerank vector xg, then after k iterations,

G*zo = (PDPY)uy = PDFP~1ay.



2 GOOGLE PAGERANK 5

Since all eigenvalues except for A\; = 1 have absolute value less than 1, as k approaches infinity,

100 ... 0

000 ... 0
lim D=0 0 0 ... 0O
k—o00 S . '

100 0 ... 0]

which means that the pagerank vector converges to a scalar multiple cv; of the steady-state
vector vy [6].

100 0
00 ... 0
lim GFzog=P | 0 0 0 ... 0 /P lxg=[v; 0 0 0 0]P 'zg=cu
(000 ... 0

After normalizing the entries of v1, the resulting entries v1; for i = 1,...,n can be interpreted
as the final probability distribution for each page i. Using this result, the score of each page is
then determined [6].

Note that even if the eigenvalues of G' are not distinct, i.e. the multiplicity of some X is greater
than 1, the process still applies. In this case, if working on a finite-dimensional complex vector
space, G could be diagonalized by finding the Jordan Canonical Form of G.

2.3 Example

As a simple example of how the process works, suppose that there are 5 web pages that a surfer
can go to. The web graph with the links displayed is shown below.

The matrix P with respect to this web graph is

0 1/3 1/2 0
1/2 0 0 1/2
P=| 0 0 0 1/2
1/2 1/3 1/2 0
0 1/3 0 0

o R O O O
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After adjusting for dangling nodes,

0o 1/3 1/2 0 1/5 0.030 0.313 0.455 0.030 0.200
1/2 0 0 1/2 1/5 0.455 0.030 0.030 0.455 0.200
P, = 0 0 0 1/2 1/5|,G=1] 0.030 0.030 0.030 0.455 0.200
1/2 1/3 1/2 0 1/5 0.455 0.313 0.455 0.030 0.200
0 1/3 0 0 1/5 0.030 0.313 0.030 0.030 0.200

Using an initial pagerank vector xo with all 1’s as it’s entries, the resulting pagerank vector from
the first 8 iterations using this Google Matrix is shown below.

Iteration T Tp Te T4 Te

0 0.200000 | 0.200000 | 0.200000 [ 0.200000 | 0.200000
0.205667 | 0.234000 | 0.149000 | 0.290667 | 0.120667
0.180138 | 0.261455 | 0.174047 | 0.267547 | 0.116813
0.197907 | 0.240124 | 0.163566 | 0.274466 | 0.123937
0.188620 | 0.251828 [ 0.167717 | 0.272730 | 0.119105
0.192879 | 0.246322 | 0.166158 | 0.273042 [ 0.121599
0.191080 | 0.248688 | 0.166715 | 0.273054 [ 0.120463
0.191794 | 0.247736 | 0.166527 | 0.273003 | 0.120940
0.191525 | 0.248099 | 0.166586 | 0.273038 | 0.120752

|| Y =] W N —

The eigenvector v; of G is calculated (using Python) to be

0.191597
0.248001
v1 = | 0.166573
0.273026
0.120804

after normalization, which has entries that are very close to the values of the pagerank vector
after 8 iterations. Based on these results, page d would be ranked the highest.

3 Conclusion

Probability is a branch of mathematics with many applications in important aspects of the world.
With probability, an insight into the future could be gained by attempting to predict future
events. Some of the applications of probability include actuarial science in risk management,
financial risk assessments, analyzing biological and ecological trends (ex: Punnett squares),
and many more. Even the browser that internet users rely on the most, Google, depends on
probability and the theory of stochastic processes for its algorithms to function. To obtain a
better view of the important processes of the world, a basic understanding of the theories of
probability is crucial.
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